
Beauty in Mathematics 
 

Often, when reading a good maths book, the author will get to the end of an 

explanation of a particularly complicated proof, theorem, or idea, and mention the 

‘beauty’ of the maths involved. I always wonder what, exactly, this means. Did I miss 

a particularly neat diagram? Or, as seems to be the case, is mathematical ‘beauty’ 

something buried deep: something that, perhaps, I need a PhD to get to grips with? 

 

I used to think it was the latter. Maybe one day, after years of studying maths at its 

highest level, I’d suddenly gain a glimpse of some incomprehensibly deep truth and 

realise the incredible beauty of things which now seem boring and trivial. 

 

Well, actually, I think you can get a 

glimpse of what Mathematicians mean 

by ‘beauty’ without too much effort at all. 

That’s what I’m going to try and 

convince you of in the rest of this article. 

 

Sometimes, I think that Mathematics is a 

bit like a dense, never-ending jungle. It 

can feel like you’re hacking away and 

away at it and never getting anywhere, 

but if you stop and look around yourself 

every once in a while there are huge 

numbers of incredible, exotic plants and animals to marvel at – and every so often 

huge new swathes of jungle are found to explore. 

 

The particular thing that I want to introduce you to, that I think is so beautiful, is 

something that was mentioned in passing on a television programme I was watching. I 

hardly knew what it meant, and I certainly had no idea how it came about, but I knew 

I had to find out more. 

 

I am talking about ‘Euler’s identity’,  

 

 So now you probably think I’m crazy. ‘What’s beautiful 

 about that?’ Well, I ought to warn you, I’m not alone –  

Mathematical Intelligencer’s readers voted the identity  

the ‘most beautiful theorem in mathematics’. The  

physicist Richard Feynman called the formula it is  

derived from "one of the most remarkable, almost  

astounding, formulas in all of mathematics". 

 

But what is so special about it? Well, first I ought to  

explain what the symbols actually mean. 

 

It’s likely you’re familiar with π, which is the number you multiply a circle’s diameter 

by to get its circumference. 

 

‘e’ is also a constant, and you may be vaguely familiar with it. It crops up in lots of 

different places. To 20 decimal places, e = 2.71828182845904523536. Both π and e 

 
Sometimes the correct answer is the former… 

 
Leonard Euler; one of the 

greatest mathematicians ever. 



are irrational numbers – they have an infinite number of decimal places and you can’t 

write them down as one integer divided by another. 

 

Probably the strangest of these 

unfamiliar numbers is ‘i’. ‘i’ is 

the square root of -1, so that  

i
2 

= -1. ‘i’ is an ‘imaginary 

number’; it isn’t found anywhere 

along the normal number line. If 

you add together ‘i’ and a normal (or ‘real’) number, you get a complex number, 

normally denoted by the letter ‘z’. 

 

Are you starting to get an idea of the beauty of Euler’s identity yet? If you take the 

constant ‘e’ to the power of (the constant ‘π’ multiplied by the very strange number 

‘i’) then take away one, you get to zero. Isn’t it a little odd how three very strange 

numbers which are not connected in any evident way combine to give such a normal, 

familiar number? 

 

So, why does this happen? You might think that it is down to some really complex 

idea – how, anyway, do we take a number to the power of ‘i’? Well, actually, it isn’t 

too difficult to see how Euler’s identity comes about – that is one thing that makes the 

identity so wonderful! But first you have to see Euler’s formula, which leads to his 

beautiful identity, in full: 

 

 
 

Doesn’t look quite as nice and neat now, does it? Don’t be put off. All you need to 

know is that the angle ‘x’ is in radians, which is just another way of measuring angles 

like degrees. Instead of splitting a circle into 360 ‘degrees’, we are splitting it into 2π 

radians – π radians is the same as 180°. Cos and sin, of course, are the trigonometric 

functions. 

 

I found the following proof of Euler’s formula (and the images from it), which I am 

going to try and explain to you, on wikipedia.org. 

 

To understand why the formula comes about, we need  

something called ‘Taylor Series’. These are just a way of  

expressing functions such as sin x or cos x as infinite sums.  

They were invented by the Mathematician Brook Taylor, who 

was also part of the committee which adjudicated the claims of 

Isaac Newton and Gottfried Leibniz. 

 

 

 

 

 

 

 

 

 

e = 1 + 1/(1!) + 1/(2!) + 1/(3!) + 1/(4!) + … 

 

An approximation of e. ‘n!’ is ‘n factorial’, and 

means n x (n-1) x (n-2) … x 2 x 1,  

so ‘4!’ = 4 x 3 x 2 x 1 = 24 

 
sin x = opposite/hypotenuse 

cos x = adjacent/hypotenuse 



The Taylor Series for the three important functions in Euler’s 

formula are as follows: 

 

 

 

 

 

 

 

 

 

 

Now if we replace ‘x’ with the variable for complex numbers, ‘z’, multiplied by i, we 

get 

 

 

 

But certain powers of ‘i’ can be simplified – for example, i
2 

is equal to -1 by 

definition, and so i
3
 = -i and i

4
 = +1. So we can simplify the above to 

 

 

 

 

 

But then we can gather the ‘i’ terms together to give 

 

You might notice that these series are the same as the series for sin x and cos x from 

earlier, so we can substitute these in to get… 

 

 
 

i.e. Euler’s formula! 

 

All we have to do now is substitute in z = π. sin π = 0 and cos π = -1 so we get  

 

. 

 

So, you see, after a long sequence of fairly complex  

mathematics we arrive back where we started – at the  

(seemingly) simple ideas of ‘1’ and ‘0’. That is what I  

think is so beautiful about this identity: it links very  

strange numbers with very ordinary and fundamental  

ones. Seeing why it works feels a bit like treading a  
 

The mathematical jungle? 

 



little-known path through the mathematical jungle to reach a secret destination 

somewhere in the thick undergrowth. 
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