Beauty in Mathematics

Often, when reading a good maths book, the author will get to the end of an
explanation of a particularly complicated proof, theorem, or idea, and mention the
‘beauty’ of the maths involved. I always wonder what, exactly, this means. Did | miss
a particularly neat diagram? Or, as seems to be the case, is mathematical ‘beauty’
something buried deep: something that, perhaps, | need a PhD to get to grips with?

| used to think it was the latter. Maybe one day, after years of studying maths at its
highest level, I’d suddenly gain a glimpse of some incomprehensibly deep truth and
realise the incredible beauty of things which now seem boring and trivial.

Well, actually, I think you can get a
glimpse of what Mathematicians mean
by ‘beauty’ without too much effort at all.
That’s what I’m going to try and
convince you of in the rest of this article.

Sometimes, | think that Mathematics is a
bit like a dense, never-ending jungle. It
can feel like you’re hacking away and
away at it and never getting anywhere,

] but if you stop and look around yourself
Sometimes the correct answer is the former... every once in a while there are huge
numbers of incredible, exotic plants and animals to marvel at — and every so often
huge new swathes of jungle are found to explore.

The particular thing that | want to introduce you to, that I think is so beautiful, is
something that was mentioned in passing on a television programme | was watching. |
hardly knew what it meant, and | certainly had no idea how it came about, but | knew
| had to find out more.

| am talking about ‘Euler’s identity’, €™ 4+ 1 =0

So now you probably think I’m crazy. ‘What’s beautiful
about that?” Well, I ought to warn you, I’'m not alone —
Mathematical Intelligencer’s readers voted the identity
the ‘most beautiful theorem in mathematics’. The
physicist Richard Feynman called the formula it is
derived from "one of the most remarkable, almost
astounding, formulas in all of mathematics".

But what is so special about it? Well, first I ought to

explain what the symbols actually mean. Leonard Euler; one of the
greatest mathematicians ever.

It’s likely you’re familiar with 7, which is the number you multiply a circle’s diameter
by to get its circumference.

‘e’ is also a constant, and you may be vaguely familiar with it. It crops up in lots of
different places. To 20 decimal places, e = 2.71828182845904523536. Both & and e



are irrational numbers — they have an infinite number of decimal places and you can’t
write them down as one integer divided by another.

e=1+1/(11)+1/@2H+ @3+ 1/4)+ ... Probably the strangest of these

unfamiliar numbers is ‘i’. ‘i’ is
An approximation of e. ‘n!” is ‘n factorial’, and | the square root of -1, so that
meansn X (n-1) x (n-2) ... x 2 x 1, i?=-1. i’ is an ‘imaginary

50 4l"=4x3x2x1=24 number’; it isn’t found anywhere
along the normal number line. If
you add together ‘i’ and a normal (or ‘real’) number, you get a complex number,

normally denoted by the letter ‘z’.

Are you starting to get an idea of the beauty of Euler’s identity yet? If you take the
constant ‘e’ to the power of (the constant ‘n’ multiplied by the very strange number
‘1”) then take away one, you get to zero. Isn’t it a little odd how three very strange
numbers which are not connected in any evident way combine to give such a normal,
familiar number?

So, why does this happen? You might think that it is down to some really complex
idea — how, anyway, do we take a number to the power of ‘i’? Well, actually, it isn’t
too difficult to see how Euler’s identity comes about — that is one thing that makes the
identity so wonderful! But first you have to see Euler’s formula, which leads to his
beautiful identity, in full:

e = cosxz +isinx
Doesn’t look quite as nice and neat now, does it? Don’t be put off. All you need to
know is that the angle ‘x’ is in radians, which is just another way of measuring angles
like degrees. Instead of splitting a circle into 360 ‘degrees’, we are splitting it into 27w
radians — = radians is the same as 180°. Cos and sin, of course, are the trigonometric
functions.

| found the following proof of Euler’s formula (and the images from it), which | am

going to try and explain to you, on wikipedia.org. B

To understand why the formula comes about, we need
something called ‘Taylor Series’. These are just a way of
expressing functions such as sin x or cos x as infinite sums.
They were invented by the Mathematician Brook Taylor, who
was also part of the committee which adjudicated the claims of
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Isaac Newton and Gottfried Leibniz. sin x = opposite/hypotenuse
cos x = adjacent/hypotenuse




The Taylor Series for the three important functions in Euler’s
formula are as follows:
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Now if we replace ‘x’ with the variable for complex numbers, ‘z’, multiplied by i, we
get
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But certain powers of ‘i” can be simplified — for example, i%is equal to -1 by
definition, and so i® = -i and i* = +1. So we can simplify the above to
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But then we can gather the ‘i’ terms together to give
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You might notice that these series are the same as the series for sin x and cos x from
earlier, so we can substitute these in to get...

e°=cosz+1sinz
i.e. Euler’s formula!

All we have to do now is substitute in z = 7. sin t = 0 and cos m = -1 S0 we get
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So, you see, after a long sequence of fairly complex
mathematics we arrive back where we started — at the
(seemingly) simple ideas of ‘1’ and ‘0’. That is what |
think is so beautiful about this identity: it links very
strange numbers with very ordinary and fundamental | ESg8
ones. Seeing why it works feels a bit like treading a The mathematical jungle?




little-known path through the mathematical jungle to reach a secret destination
somewhere in the thick undergrowth.
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